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Abstract
We numerically investigate the approach to the stationary state in the non-
conservative Olami–Feder–Christensen (OFC) model for earthquakes. Starting
from initially random configurations, we monitor the average earthquake size
in different portions of the system as a function of time (the time is defined
as the input energy per site in the system). We find that the process of self-
organization develops from the boundaries of the system and it is controlled by
a dynamical critical exponent z � 1.3 that appears to be universal over a range
of dissipation levels of the local dynamics. We show moreover that the transient
time of the system ttr scales with system size L as ttr ∼ Lz. We argue that the
(non-trivial) scaling of the transient time in the OFC model is associated with
the establishment of long-range spatial correlations in the steady state.

PACS numbers: 05.65.+b, 45.70.Ht, 89.75.Fb

1. Introduction

The idea of self-organized criticality (SOC) was introduced by Bak, Tang and Wiesenfeld
(BTW) [1] as a possible paradigm for the widespread occurrence in nature of scale free
phenomena. It refers to the intrinsic tendency of extended, non-equilibrium systems to
spontaneously self-organize into a dynamical critical state. In general, SOC systems are
driven externally at a very slow rate and relax with bursts of activity (avalanches) on a
very fast (almost instantaneous) timescale. The standard signature of SOC is a power law
distribution of avalanche sizes and in this sense the system is said to be critical. Typical
physical realizations of this phenomena include, among others, earthquakes, forest fires and
biological evolution (for a review, see, e.g., [2, 3]).

A number of simple lattice models have been developed to test the applicability of SOC
to a variety of complex interacting dynamical systems [2, 3]. In general these models reach
a stationary critical state after a sufficiently long transient time. However, not much attention
has been paid to the self-organization process and studies have mainly concentrated on the
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properties of different models at stationarity. This is partly justified by the fact that some
of the most studied models, such as the BTW [1] and the Zhang [4] models, display a very
simple transient time behaviour. Indeed in these models the relaxation time does not scale
with system size (time is defined as the input energy per site in the system) [5]. On the other
hand, there are also models with a more complex behaviour (see, e.g., [6]).

In this paper we investigate the approach to the stationary state in the so-called Olami–
Feder–Christensen (OFC) model for earthquake dynamics [7]. This model has in recent
years attracted a considerable amount of attention especially because it has been proposed as
an example of a system displaying SOC behaviour even with a non-conservative dynamics
[8–11]. One of the most important questions in this field is indeed whether a conserving
local dynamics is a necessary condition for SOC [12, 13]. For example, it is well known that
the BTW model is subcritical if dissipation is introduced [14]. The presence of criticality in
the non-conservative OFC model is still debated [15, 16]. Recent numerical investigations,
though, have shown that the model on a square lattice displays scaling behaviour, up to lattice
sizes presently accessible by computer simulations [17, 18].

The present investigation complements previous analyses of the OFC model which were
based on the study of the probability distribution for earthquake sizes. It provides further
numerical support in favour of criticality in the non-conservative regime. Indeed, we will
show that the model displays a non-trivial transient time behaviour: the relaxation time
scales with system size and it is controlled by a dynamical critical exponent z that appears
to be universal over a range of dissipation levels of the local dynamics. Moreover, we will
establish the presence of long-range spatial correlations in the system. In doing so, we will be
able to gain some insight into the mechanisms behind criticality in non-conserving systems,
mechanisms that are very different from those at work in systems with a conservation law.

The plan of the paper is as follows. In section 2 we describe the model and briefly
summarize previous findings relevant to our investigation. In section 3 we define the quantities
of interest and present the results of our numerical study. Finally, in section 4 we discuss our
main conclusions.

2. The model

The OFC model is a coupled map lattice model, where with each site (i, j) of a square lattice
of linear size L is associated a real variable Fij . In the initial state, at time t = 0, the values
of the Fij are chosen randomly in the uniform interval (0, Fc). Subsequently the variables
evolve according to the following two-step dynamical rules: (i) if all sites in the system are
stable (i.e. Fij < Fc), they increase simultaneously and uniformly at a constant rate,

∂Fij (t)

∂t
= v (1)

(ii) as soon as one of them reaches the threshold value Fc, the uniform driving is stopped and
an ‘earthquake’ starts:

Fij � Fc ⇒
{
Fij → 0
Fnn → Fnn + αFij

(2)

where ‘nn’ denotes the set of nearest neighbour sites of (i, j) and α is a parameter that controls
the level of conservation of the dynamics (α = 1/4 corresponds to the conservative case).
The ‘toppling’ rule (2) can possibly produce a chain reaction, which ends when there are no
more unstable sites in the system. At that point, the uniform growth (1) starts again. In the
following we will assume, without loss of generality, a unit growth rate, i.e. v = 1. A crucial
point in the description of the model is the choice of boundary conditions and, in accordance
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with previous investigations, we will consider open boundary conditions. These conditions
imply that sites close to the boundaries topple according to (2) but have a smaller coordination
number.

There is a clear separation of timescales in the system: earthquakes occur instantaneously
on the slow timescale of the driving. The time in the system is therefore set by the slow time
variable t. By construction, moreover, the time coincides with the input energy per site in the
system. We will make use of this latter observation when we try to compare the behaviour of
the OFC model with other models, such as the BTW model or the Zhang model.

After a sufficiently long transient time, the system settles into a stationary state, where the
statistical properties of the model (e.g. the probability distribution for earthquake sizes) do not
depend on time. In the BTW model and in the Zhang model, the transient time is relatively
brief and does not scale with system size. On average, an input energy proportional to system
size is needed to reach the steady state [5]. In contrast, transient times in the OFC model are
known to be extremely long, especially for large lattices. For example, it was claimed in [8]
that 4 × 108 earthquakes are not enough to reach stationarity in a system of size L = 200
for α = 0.1. This conclusion was reached by observing the very slow convergence of the
mean earthquake size to an asymptotic value during the transient time. However, in [8] a
systematic investigation of the relaxation times for different α and L was not attempted. A
more quantitative approach to the problem was proposed in [10] by Middleton and Tang (MT).
According to these authors a ‘self-organized’ region develops first close to the boundaries and
propagates thereafter into the bulk of the system. The distance from the boundaries of the
invasion front grows with time as a power law, d(t) ∼ tγ (α), with γ = 0.23±0.08, 0.63±0.08
for α = 0.07, 0.15, respectively. The system reaches stationarity when the SOC region crosses
the whole sample ( d(t) ∼ L). Assuming that the power law behaviour of d(t) holds until
saturation, than the transient time of the system should scale as ttr ∼ L1/γ (α). More recently,
it has been suggested in [11] that two distinct relaxation times exist in the system, associated
respectively with the power law region and the ‘tail’ (induced by finite size effects) of the
distribution of earthquake sizes. According to this study, the former should stabilize much
faster than the latter.

3. Results

Most of the studies on the OFC model at stationarity concentrate on the probability distribution
of earthquake sizes, PL(s), where L is the size of the system and s is the total number of sites
that topple during an earthquake. This probability distribution does not show simple finite
size scaling, at least in the range of lattice sizes accessible to simulations at present [17].
In a recent paper [18], we have focused instead on the properties of earthquakes confined
within a fictitious subsystem of linear size λ (see figure 1). The model is driven according
to its usual dynamics but only those particular earthquakes that are entirely contained within
the subsystem are counted. We have shown that if λ is sufficiently smaller than L the size
distribution for this subset of earthquakes, Pconf(λ, s), obeys ordinary finite size scaling, i.e.
Pconf(λ, s) � λ−βf (s/λD), where the exponents β = 3.6 and D = 2 are universal over a
range of values of α.

In this work we want to address the issues briefly summarized in the previous section
concerning the approach to stationarity in the OFC model. In order to be able to formulate a
scaling hypothesis and make use of collapse plots, we will proceed in a way similar to that of
[18]. We will consider earthquakes localized within given subsystems, in particular subsystems
placed (a) at the boundaries and (b) at the centre of the system. As it is a prohibitive task to
determine the time evolution of the entire distribution Pconf(λ, s), we will restrict ourselves
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Figure 1. Schematic representation of earthquakes entirely confined within a subsystem of linear
size λ (dashed line). Toppling sites are denoted with a cross.
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Figure 2. Average earthquake size 〈s〉λ,L in a subsystem placed at the boundary as a function of
time; α = 0.18 and, from bottom to top, λ = 32, λ = 64 and λ = 128.

to the mean earthquake size, 〈s〉λ,L(t), and, in general, to the qth moment (up to q = 4) of
the distribution, 〈sq〉λ,L(t). To determine numerically these quantities we have run several
simulations with different initial conditions, partitioning the time into bins of size �t . Let
n be the number of earthquakes occurring between time t − �t/2 and t + �t/2 in a given
realization of the system and let s1, . . . , sn be the sizes of these earthquakes. Then we define

〈sq〉λ,L(t) �
〈[

s
q

1 + · · · + s
q
n

]t+�t/2
t−�t/2

〉
〈
[n]t+�t/2

t−�t/2

〉 (3)

where 〈· · ·〉 denotes an average over different realizations of the system, i.e. over different
initial conditions. For each system, the parameter �t has been chosen small with respect to
the transient time ttr but large enough to collect reasonably accurate statistics.

We consider first the case of subsystems placed adjacent to a boundary of the system, in
a symmetric position with respect to the corners. In figure 2, we report 〈s〉λ,L as a function
of time for α = 0.18 and some λ and L. We observe that if the linear dimension λ of the
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Figure 3. Collapse plots of 〈s〉λ(t) for a subsystem placed at the boundary and for (a) α = 0.15,
(b) α = 0.18 and (c) α = 0.21. The value of the dynamical critical exponent is z = 1.3.

box is sufficiently smaller than the linear dimension of the system L (approximately L � 4λ),
then the curve 〈s〉λ,L(t) becomes indistinguishable for different L. This has been verified also
for other values of α and λ. We will therefore denote with 〈s〉λ(t) the mean earthquake size
in this limit. It is already visible from figure 2 that the relaxation time of 〈s〉λ(t) increases
with λ. This is an indication in support of the scenario proposed by MT. Regions close to the
boundaries reach stationarity sooner, signalling that an invasion front is moving towards the
bulk of the system. Some of MT conclusions nonetheless will have to be modified as we will
show later.

In order to describe quantitatively the invasion from the boundaries of the self-organized
region we make the following simple scaling hypothesis:

〈s〉λ(t) = ληF (t/λz) (4)

where η and z are two suitable critical exponents. In particular, z is a dynamical critical
exponent that should satisfy z = 1/γ , where γ is the ‘invasion’ exponent as defined by MT.
In the limit of t → ∞ the scaling function F(x) saturates to a constant, implying that the
exponent η is related to the finite size exponents of the probability distribution Pconf(λ, s) by
the relation η = 2D−β ≈ 0.4. In figure 3, we report collapse plots of the form (4) for various
values of α. We observe that a reasonably good collapse could be obtained for all the α if we
choose the universal exponent z = 1.3 ± 0.1. We are therefore led to conclude that a universal
exponent z exists contrary to the claims by MT.

We consider next subsystems of different sizes placed at the centre of the system.
We observe that the relaxation time does not depend on the size of the subsystems (see
figure 4(a)). This confirms that the self-organization mechanism develops from the boundaries
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Figure 4. Time dependence of the average earthquake sizes in subsystems placed at the centre of
the system for α = 0.18 and L = 256; (a) average earthquake size 〈s〉λ,L for, from bottom to top,
λ = 16, 32, 64, 128, 256 and (b) qth moment of the distribution for λ = 32 and, from bottom to
top, q = 1, 2, 4.

and that the system enters stationarity when the self-organized region spans the whole system.
Only when the bulk of the system is reached by the self-organized region is stationarity settled
so that the concentric subsystem of different sizes will inevitably reach stationarity at the same
time. We have also tested the relaxation times for higher moments of the avalanche probability
distribution to see whether different parts of the distribution (e.g. power law part and the ‘tail’)
have different relaxation times as suggested in [11]. However, in our investigation we have not
observed any significant difference in the relaxation times associated with different moments.
We report as an example in figure 4(b) the behaviour of the first, second and fourth moments
in a particular case.

The scaling equation (4) suggests that the transient time in the OFC model scales with
system size as ttr ∼ Lz. One way to test this is by comparing the time behaviour of the
average earthquake size in a central subsystem of size λ for different system sizes L. Indeed
the asymptotic value 〈s〉λ,L(t → ∞) should not depend on L. We report as an example the
case for α = 0.18 in figure 5, where we have rescaled the time by a factor Lz. The curves
show some noisy behaviour, due to the difficulties in collecting good statistics (relatively few
earthquakes occur in the bulk of the system as compared to the boundaries). Nonetheless the
value deduced for the exponent, z ≈ 1.3, is consistent with the determination made through
the analysis of the earthquakes occurring at the boundaries. We have obtained similar results
also for other values of α. In addition, besides the average earthquake size, we have considered
also the time behaviour of other quantities such as the roughness of the energy landscape (in
analogy to surface growth problems) and the number of earthquakes per unit time. All these
different quantities on average reach stationarity at the same time.

The algebraic divergence of the relaxation time with system size reflects the presence of
long-range spatial correlations in the stationary state. Indeed if correlations were only short
range, then one would expect that the transient time would not scale with system size. This is
for example the case for the BTW model in d dimensions, where the height–height correlations
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Figure 5. Collapse plots of 〈s〉λ,L(t) for a subsystem of size λ = 32 placed at the centre of a
system of size L; the conservation parameter is α = 0.18. The value of the dynamical critical
exponent is z = 1.3.
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Figure 6. Rescaled probability distribution of the spatially averaged force in the system for, from
bottom to top, α = 0.21, 018, 0.15. 〈M〉 and σM are, respectively, the average and the standard
deviation of the distribution. The top and bottom curves have been shifted by a factor of 10,
respectively, up and down for visual clarity. Squares represent the BHP (rescaled) probability
distribution observed in an experiment on turbulence [20].

are algebraic but decays as fast as r−2d (r being the distance between two sites) [19]. We have
measured for various L and α the probability distribution of the spatially averaged force in the
system

M = 1

L2

L∑
i,j=1

Fi,j . (5)
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In a system with sufficiently short-range correlations, this probability distribution would tend,
in the limit L → ∞, to a Gaussian distribution around the mean due to the central limit theorem
(this is indeed what results in the BTW model). Let 〈M〉 and σM be, respectively, the average
and the standard deviation of the distribution. In figure 6, we have plotted log(σMP(M)) versus
(M −〈M〉)/σM for various L and α. Using these coordinates a Gaussian function would result
in an inverse parabola. For each α value the data of figure 6 collapse on a single function, which
is clearly not Gaussian (deviations from Gaussianity are more pronounced for increasing α

values). This indicates that the central limit theorem does not hold in this case, not even for
large L, suggesting that long-range algebraic correlations are present and therefore the sum
(5) cannot be decomposed into a sum of independent terms. This observation is in agreement
with the results reported in [13] where the presence of long-range spatial correlations were
deduced from the behaviour of a suitably defined susceptibility, χ ≡ (LσM)2. It was claimed
that χ diverges as L2 and correspondingly that σM is, to leading order, independent of L (if
M was a sum of uncorrelated variables, σM would decrease as 1/L). In our investigation we
have found that σM slightly increases with L but asymptotically tends to a constant value, in
accordance with [13] (M is a bounded variable so σM cannot grow indefinitely).

4. Conclusions

In conclusion, in this paper we have examined the process of self-organization in the OFC
model. By considering earthquakes confined within a given subsystem we have been able
to clarify some of the issues related to this problem. In accordance with Middleton and
Tang [10] we have found that SOC develops first close to the boundaries and subsequently
invades the interior of the system. The invasion process is controlled by a dynamical critical
exponent, z � 1.3, which, contrary to previous claims, is universal over a range of values of
the dissipation level of the local dynamics. We have shown, moreover, that the transient time
in the system scales with system size as ttr ∼ Lz. This is a peculiarity of the OFC model as
other ‘sandpile-like’ models (e.g. the BTW and the Zhang models) do not display any scaling
in the transient time. We have associated this feature with the presence of long-range spatial
correlations in the stationary state.

Our findings are in general agreement with recent works on the OFC model [17, 18].
Indeed we have provided complementary evidence (not based on the probability distribution
for earthquake sizes) that the model is critical even in a non-conservative regime. Moreover
it confirms that there is universality in the system and that finite-size scaling can be recovered
by considering subsystems whose linear extent is sufficiently small.

Finally, it is interesting to remark that the probability distribution for the spatially averaged
force in the system is somewhat reminiscent of a probability distribution observed in a confined
turbulent flow experiment [20] (BHP). As a term of comparison we have reported in figure 6
the BHP functional form over-imposed on the curve for α = 0.21. Attempts to link SOC
systems to turbulent phenomena have long been suggested, but only recently has this been put
on a firmer basis [21].
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